Bayesian inference for Heston-STAR models

نویسندگان

  • Osnat Stramer
  • Xiaoyu Shen
  • Matthew A. Bognar
چکیده

The Heston-STAR model is a new class of stochastic volatility models defined by generalizing the Heston model to allow the volatility of the volatility process as well as the correlation between asset log-returns and variance shocks to change across different regimes via smooth transition autoregressive (STAR) functions. The form of the STAR functions is very flexible, much more so than the functions introduced in Jones (2003), and provides the framework for a wide range of stochastic volatility models. A Bayesian inference approach using data augmentation techniques is used for the parameters of our model. We also explore convergence of the MCMC sampler, as well as goodness of fit of our Heston-STAR model. Our analysis of the S&P 500 and VIX index demonstrates that the Heston-STAR model is better capable of dealing with large market fluctuations (such as in 2008) compared to the standard

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Cost Analysis of Acceptance Sampling Models Using Dynamic Programming and Bayesian Inference Considering Inspection Errors

Acceptance Sampling models have been widely applied in companies for the inspection and testing the raw material as well as the final products. A number of lots of the items are produced in a day in the industries so it may be impossible to inspect/test each item in a lot. The acceptance sampling models only provide the guarantee for the producer and consumer that the items in the lots are acco...

متن کامل

Bayesian approach to inference of population structure

Methods of inferring the population structure‎, ‎its applications in identifying disease models as well as foresighting the physical and mental situation of human beings have been finding ever-increasing importance‎. ‎In this article‎, ‎first‎, ‎motivation and significance of studying the problem of population structure is explained‎. ‎In the next section‎, ‎the applications of inference of p...

متن کامل

Inference for Lévy Driven Stochastic Volatility Models Via Adaptive Sequential Monte Carlo

In the following paper we investigate simulation methodology for Bayesian inference in Lévy driven SV models. Typically, Bayesian inference from such statistical models is performed using Markov chain Monte Carlo (MCMC) methods. However, it is well-known that fitting SV models using MCMC is not always straight-forward. One method that can improve over MCMC is SMC samplers ([14]), but in that ap...

متن کامل

A One-Stage Two-Machine Replacement Strategy Based on the Bayesian Inference Method

In this research, we consider an application of the Bayesian Inferences in machine replacement problem. The application is concerned with the time to replace two machines producing a specific product; each machine doing a special operation on the product when there are manufacturing defects because of failures. A common practice for this kind of problem is to fit a single distribution to the co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Statistics and Computing

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2017